3 CVD risk calculator

oil, gas and energy law
August 4, 2017
The Progressive Paradox
August 4, 2017
Show all

3 CVD risk calculator

1.    What is the outcome of each of the 3 CVD risk calculator in the Qatar Biobank sample

The outcome of risk calculator was categorise as per AHA 2013 guideline to the following categories high risk >20% , Moderate Risk 10% to 20%, low risk < 10%
Below table illustrates the results from the pooled cohort equation risk calculator.

Pooled cohort equation Risk prevalence
Frequency    Percent    Valid Percent    Cumulative Percent
Valid    High risk    16    2.3    2.3    2.3
Low risk    627    90.7    90.7    93.1
Moderate risk    48    6.9    6.9    100.0
Total    691    100.0    100.0

Table below represent the results after combining the moderate and high risk together at which it was carried out due to the population sample mainly shifted toward younger participants (Mean age = 38)
Pooled cohort equation Risk prevalence combining high and moderate
Frequency    Percent
Valid    High & Moderate risk    64    9.3
Low risk    627    90.7

Total    691    100.0

The outcome of Framingham Lipid equation Risk is shown in the bellow table
Framingham Lipid equation Risk prevalence
Frequency    Percent    Valid Percent    Cumulative Percent
Valid    High risk    54    7.8    7.8    7.8
Low risk    554    80.2    80.2    88.0
Moderate risk    83    12.0    12.0    100.0
Total    691    100.0    100.0

Framingham Lipid equation Risk prevalence combining high and moderate
Frequency    Percent
Valid    High & Moderate risk    137    19.8
Low risk    554    80.2
risk
Total    691    100.0

The outcome of Framingham Lipid equation Risk is shown in the bellow table

Framingham BMI equation Risk prevalence
Frequency    Percent    Valid Percent    Cumulative Percent
Valid    High risk    69    10.0    10.0    10.0
Low risk    523    75.7    75.7    85.7
Moderate risk    99    14.3    14.3    100.0
Total    691    100.0    100.0

Framingham BMI equation Risk prevalence combining high and moderate

Frequency    Percent
Valid    High & Moderate risk    168    24.3
Low risk    523    75.7

Total    691    100.0

Q2 what is the prevalence of CVD Risk in the Qatari population within specified subgroups?
The following result shows the prevalence of each calculator according to the age group and gender

Age group * pooled cohort equation Risk prevalence  (Crosstabulation)
Gender:   Total
Risk Categories    Total
High risk    Low risk    Moderate risk
agegroup2    >60    Count    10    6    15    31
% within age group    32.3%    19.4%    48.4%    100.0%
% within Risk Categories    62.5%    1.0%    31.3%    4.5%
% of Total    1.4%    0.9%    2.2%    4.5%
20-30    Count    0    231    0    231
% within age group    0.0%    100.0%    0.0%    100.0%
% within Risk Categories    0.0%    36.8%    0.0%    33.4%
% of Total    0.0%    33.4%    0.0%    33.4%
31-40    Count    0    168    2    170
% within age group    0.0%    98.8%    1.2%    100.0%
% within Risk Categories    0.0%    26.8%    4.2%    24.6%
% of Total    0.0%    24.3%    0.3%    24.6%
41-50    Count    1    140    8    149
% within age group    0.7%    94.0%    5.4%    100.0%
% within Risk Categories    6.3%    22.3%    16.7%    21.6%
% of Total    0.1%    20.3%    1.2%    21.6%
51-60    Count    5    82    23    110
% within age group    4.5%    74.5%    20.9%    100.0%
% within Risk Categories    31.3%    13.1%    47.9%    15.9%
% of Total    0.7%    11.9%    3.3%    15.9%
Total    Count    16    627    48    691
% within age group    2.3%    90.7%    6.9%    100.0%
% within Risk Categories    100.0%    100.0%    100.0%    100.0%
% of Total    2.3%    90.7%    6.9%    100.0%

Pooled cohort equation Risk prevalence  * Gender Crosstabulation
Gender    Total
f    m
Risk Categories    High risk    Count    0    16    16
% of Total    0.0%    2.3%    2.3%
Low risk    Count    291    336    627
% of Total    42.1%    48.6%    90.7%
Moderate risk    Count    4    44    48
% of Total    0.6%    6.4%    6.9%
Total    Count    295    396    691
% of Total    42.7%    57.3%    100.0%

Age group  *  Framingham Lipid equation Risk prevalence  (Crosstabulation)
Risk categories    Total
High risk    Low risk    Moderate risk
agegroup2    >60    Count    19    3    9    31
% within age group    61.3%    9.7%    29.0%    100.0%
% within Risk categories    35.2%    0.5%    10.8%    4.5%
% of Total    2.7%    0.4%    1.3%    4.5%
20-30    Count    0    231    0    231
% within age group    0.0%    100.0%    0.0%    100.0%
% within Risk categories    0.0%    41.7%    0.0%    33.4%
% of Total    0.0%    33.4%    0.0%    33.4%
31-40    Count    1    164    5    170
% within age group    0.6%    96.5%    2.9%    100.0%
% within Risk categories    1.9%    29.6%    6.0%    24.6%
% of Total    0.1%    23.7%    0.7%    24.6%
41-50    Count    8    112    29    149
% within age group    5.4%    75.2%    19.5%    100.0%
% within Risk categories    14.8%    20.2%    34.9%    21.6%
% of Total    1.2%    16.2%    4.2%    21.6%
51-60    Count    26    44    40    110
% within age group    23.6%    40.0%    36.4%    100.0%
% within Risk categories    48.1%    7.9%    48.2%    15.9%
% of Total    3.8%    6.4%    5.8%    15.9%
Total    Count    54    554    83    691
% within age group    7.8%    80.2%    12.0%    100.0%
% within Risk categories    100.0%    100.0%    100.0%    100.0%
% of Total    7.8%    80.2%    12.0%    100.0%

Framingham Lipid equation Risk prevalence * Gender Crosstabulation
Gender    Total
f    m
LipidRiskcategories    High risk    Count    4    50    54
% of Total    0.6%    7.2%    7.8%
Low risk    Count    284    270    554
% of Total    41.1%    39.1%    80.2%
Moderate risk    Count    7    76    83
% of Total    1.0%    11.0%    12.0%
Total    Count    295    396    691
% of Total    42.7%    57.3%    100.0%

Age group * Framingham BMI equation Risk prevalence (Crosstabulation)
Gender:   Total
Risk categories    Total
High risk    Low risk    Moderate risk
agegroup2    >60    Count    26    0    5    31
% within age group    83.9%    0.0%    16.1%    100.0%
% within Risk categories    37.7%    0.0%    5.1%    4.5%
% of Total    3.8%    0.0%    0.7%    4.5%
20-30    Count    0    231    0    231
% within age group    0.0%    100.0%    0.0%    100.0%
% within Risk categories    0.0%    44.2%    0.0%    33.4%
% of Total    0.0%    33.4%    0.0%    33.4%
31-40    Count    0    165    5    170
% within age group    0.0%    97.1%    2.9%    100.0%
% within Risk categories    0.0%    31.5%    5.1%    24.6%
% of Total    0.0%    23.9%    0.7%    24.6%
41-50    Count    10    96    43    149
% within age group    6.7%    64.4%    28.9%    100.0%
% within Risk categories    14.5%    18.4%    43.4%    21.6%
% of Total    1.4%    13.9%    6.2%    21.6%
51-60    Count    33    31    46    110
% within age group    30.0%    28.2%    41.8%    100.0%
% within Risk categories    47.8%    5.9%    46.5%    15.9%
% of Total    4.8%    4.5%    6.7%    15.9%
Total    Count    69    523    99    691
% within age group    10.0%    75.7%    14.3%    100.0%
% within Risk categories    100.0%    100.0%    100.0%    100.0%
% of Total    10.0%    75.7%    14.3%    100.0%

Framingham BMI equation Risk prevalence * Gender Crosstabulation
Gender    Total
f    m
Risk categories    High risk    Count    6    63    69
% of Total    0.9%    9.1%    10.0%
Low risk    Count    268    255    523
% of Total    38.8%    36.9%    75.7%
Moderate risk    Count    21    78    99
% of Total    3.0%    11.3%    14.3%
Total    Count    295    396    691
% of Total    42.7%    57.3%    100.0%

Q3 what is the level of agreement between the three calculators?
Agreement between the three risk calculators was assessed in two ways: Intra-Class Correlations (ICC), and Cohen€™s Kappa Index.

Intra-Class Correlations (ICC)
ICC were measured on the (a) raw calculated raw risk scores (Table 1) as well as on (b) the risk classes (1=Low, 2=Medium, and 3=High) resulting from each calculator (Table 2).

Table 1: Intra-class Correlation Coefficient
Intra-class Correlationb    95% Confidence Interval    F Test with True Value 0
Lower Bound    Upper Bound    Value    df1    df2    Sig
Single Measures    .869a    .853    .884    20.950    690    1380    .000
Average Measures    .952c    .946    .958    20.950    690    1380    .000
Two-way mixed effects model where people effects are random and measures effects are fixed.
a. The estimator is the same, whether the interaction effect is present or not.
b. Type C intraclass correlation coefficients using a consistency definition-the between-measure variance is excluded from the denominator variance.
c. This estimate is computed assuming the interaction effect is absent, because it is not estimable otherwise.

Table 2: Intra-class Correlation Coefficient
Intra-class Correlationb    95% Confidence Interval    F Test with True Value 0
Lower Bound    Upper Bound    Value    df1    df2    Sig
Single Measures    .744a    .715    .770    9.705    690    1380    .000
Average Measures    .897c    .883    .910    9.705    690    1380    .000
Two-way mixed effects model where people effects are random and measures effects are fixed.
a. The estimator is the same, whether the interaction effect is present or not.
b. Type C intraclass correlation coefficients using a consistency definition-the between-measure variance is excluded from the denominator variance.
c. This estimate is computed assuming the interaction effect is absent, because it is not estimable otherwise.

In both Table 1 and Table 2, ICC (two-way mixed, consistency, single and average-measures (McGraw & Wong, 1996) indicate overall consistency between the three CVD risk calculators in their ratings for CVS risk across individuals in the study sample. The resulting ICC was in the excellent range, 0.744 <= ICC <= 0.952  (Cicchetti, 1994: Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized
assessment instruments in psychology. Psychological Assessment. 1994; 6(4):284€“290.), indicating that risk calculators had a high degree of agreement and suggesting that CVD risk was rated similarly across CVD risk calculators. The high ICC suggests that a minimal amount of measurement error was introduced by the risk calculators, and therefore statistical power for subsequent analyses is not substantially reduced. CVD risk ratings were therefore deemed to be suitable for use in the hypothesis tests of the present study (Hallgren, 2012: Kevin A. Hallgren; Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial, Tutor Quant Methods Psychol. 2012; 8(1): 23€“34).

Cohen€™s Kappa Index

An agreement analysis was performed to assess the degree that the CVD risk calculators consistently assigned categorical risk classes ratings to individuals in the study sample. Kappa was computed for each CVD risk calculators pair (Tables 3, 4, and 5) then averaged to provide a single index of agreement (Light, 1971: Light RJ. Measures of response agreement for qualitative data: Some generalizations and alternatives; Psychological Bulletin. 1971; 76(5):365€“377.). The value of the Kappa index for the individual pairs of risk calculator indicate that there is a substantial agreement between  FRAMINGHAM LIPID RISK CATEGORIES and Framingham BMI Risk categories  (? = 0.7) (Landis & Koch, 1977: Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977; 33(1):159€“174. [PubMed: 843571])), a moderate agreement between  FRAMINGHAM LIPID RISK CATEGORIES and POOLED COHORT EQUATION RISK (? = 0.4) and a fair agreement between F2RS Framingham BMI Risk calculator and POOLED COHORT EQUATION RISK calculator(? = 0.3). The overall average kappa indicated moderate agreement, ? = 0.46, and is adequately close, but not identical to, the agreement level using ICC.

Table 3: Framingham lipid risk categories * Framingham BMI risk categories  Crosstabulation
Count
F2RSClass    Total
High    Low    Medium
F1RSClass    High    48    2    4    54
Low    0    514    40    554
Medium    21    7    55    83
Total    69    523    99    691

Table 4: Symmetric Measures
Value    Asymp. Std. Errora    Approx. Tb    Approx. Sig.
Measure of Agreement    Kappa    .709    .029    24.368    .000
N of Valid Cases    691
a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Table 5: Framingham lipid risk categories * pooled cohort equation risk categories Crosstabulation
Count
POOLED COHORT EQUATION RISKClass    Total
High    Low    Medium
FRAMINGHAM LIPID RISK CATEGORIESClass    High    16    1    37    54
Low    0    554    0    554
Medium    0    72    11    83
Total    16    627    48    691

Table 6: Symmetric Measures
Value    Asymp. Std. Errora    Approx. Tb    Approx. Sig.
Measure of Agreement    Kappa    .393    .036    14.173    .000
N of Valid Cases    691
a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Table 7: Framingham BMI risk categories * pooled cohort equation risk categories
Count
POOLED COHORT EQUATION RISKClass    Total
High    Low    Medium
FRAMINGHAM BMI EQUATION RISKClass    High    16    15    38    69
Low    0    520    3    523
Medium    0    92    7    99
Total    16    627    48    691

Table 8: Symmetric Measures
Value    Asymp. Std. Errora    Approx. Tb    Approx. Sig.
Measure of Agreement    Kappa    .288    .032    11.088    .000
N of Valid Cases    691
a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Predictive Modeling
We analyzed and validated the predictive power of each risk calculator using two predictive modeling techniques: binary logistic regression and a decision tree (using CHAID algorithm). The logistic regression is a parametric technique that is widely used by bio-medical researchers, whereas the decision tree is a machine learning technique that is non-parametric and that is most known for its easy interpretation and understandability.
Framingham lipid risk calculator €“ Logistic Regression

Table 1: Omnibus Tests of Model Coefficients
Chi-square    df    Sig.
Step 1    Step    502.601    6    .000
Block    502.601    6    .000
Model    502.601    6    .000
Table 1 indicates that the logistic regression model is significant (p < 0.001) for  FRAMINGHAM LIPID RISK CATEGORIES at the 0.05 significance level, and explains a high proportion of variability in the  FRAMINGHAM LIPID RISK CATEGORIES variability as shown by the pseudo-r-square values in Table 2. The model goodness of fit is confirmed by the Hosmer-Lemeshow goodness-of-fit test (Table 3).

Tabl3 2: Model Summary
Step    -2 Log likelihood    Cox & Snell R Square    Nagelkerke R Square
1    185.615a    .517    .820
a. Estimation terminated at iteration number 9 because parameter estimates changed by less than .001.

Table 3: Hosmer and Lemeshow Test
Step    Chi-square    df    Sig.
1    4.788    8    .780

Table 4 indicates a high accuracy of CVD classification using  FRAMINGHAM LIPID RISK CATEGORIES.

Table 4: Classification Tablea
Observed    Predicted
F1RiskClass01    Percentage Correct
0    1
Step 1    F1RiskClass01    0    532    22    96.0
1    24    113    82.5
Overall Percentage            93.3
a. The cut value is .500

Table 5 shows that all variables are significant for CVD risk classification as well as the coefficients that relate the independent variables to the risk score calculated by Framingham 1 CVD risk calculator.

Table 5: Variables in the Equation
B    S.E.    Wald    df    Sig.    Exp(B)
Step 1a    Gender01    3.613    .612    34.808    1    .000    37.062
Age    .290    .036    66.440    1    .000    1.336
SBP    .063    .016    14.969    1    .000    1.066
TRTBP    2.339    .540    18.782    1    .000    10.366
TCL    .020    .005    13.780    1    .000    1.020
HDL    -.118    .022    27.760    1    .000    .889
Constant    -24.483    3.206    58.331    1    .000    .000
a. Variable(s) entered on step 1: Gender01, Age, SBP, TRTBP, TCL, HDL.

Figure 1 and Table 6 indicate a high level of robustness of  FRAMINGHAM LIPID RISK CATEGORIES CVD classification as indicated by the high AUC of 0.982 (CI: 0.974, 0.990) at the 0.05 significance level.

Area Under the Curve
Test Result Variable(s):   Predicted probability
Area    Std. Errora    Asymptotic Sig.b    Asymptotic 95% Confidence Interval
Lower Bound    Upper Bound
.982    .004    .000    .974    .990
a. Under the nonparametric assumption
b. Null hypothesis: true area = 0.5

FRAMINGHAM BMI EQUATION RISK €“ Logistic Regression

Omnibus Tests of Model Coefficients
Chi-square    df    Sig.
Step 1    Step    576.818    5    .000
Block    576.818    5    .000
Model    576.818    5    .000

Model Summary
Step    -2 Log likelihood    Cox & Snell R Square    Nagelkerke R Square
1    189.718a    .566    .845
a. Estimation terminated at iteration number 9 because parameter estimates changed by less than .001.

Hosmer and Lemeshow Test
Step    Chi-square    df    Sig.
1    1.874    8    .985

Classification Tablea
Observed    Predicted
F2RiskClass01    Percentage Correct
0    1
Step 1    F2RiskClass01    0    502    21    96.0
1    26    142    84.5
Overall Percentage            93.2
a. The cut value is .500

Variables in the Equation
B    S.E.    Wald    df    Sig.    Exp(B)
Step 1a    Gender01    4.192    .595    49.595    1    .000    66.150
Age    .333    .038    76.410    1    .000    1.395
SBP    .084    .017    23.909    1    .000    1.087
TRTBP    1.742    .592    8.652    1    .003    5.710
BMI    .218    .043    25.433    1    .000    1.243
Constant    -36.120    4.187    74.430    1    .000    .000
a. Variable(s) entered on step 1: Gender01, Age, SBP, TRTBP, BMI.

Area Under the Curve
Test Result Variable(s):   Predicted probability
Area    Std. Errora    Asymptotic Sig.b    Asymptotic 95% Confidence Interval
Lower Bound    Upper Bound
.984    .004    .000    .977    .991
a. Under the nonparametric assumption
b. Null hypothesis: true area = 0.5

POOLED COHORT EQUATION RISK €“ Logistic Regression

Omnibus Tests of Model Coefficients
Chi-square    df    Sig.
Step 1    Step    296.505    6    .000
Block    296.505    6    .000
Model    296.505    6    .000

Model Summary
Step    -2 Log likelihood    Cox & Snell R Square    Nagelkerke R Square
1    129.920a    .349    .758
a. Estimation terminated at iteration number 9 because parameter estimates changed by less than .001.

Hosmer and Lemeshow Test
Step    Chi-square    df    Sig.
1    4.094    8    .849

Classification Tablea
Observed    Predicted
PCERiskClass01    Percentage Correct
0    1
Step 1    PCERiskClass01    0    616    11    98.2
1    17    47    73.4
Overall Percentage            95.9
a. The cut value is .500

Variables in the Equation
B    S.E.    Wald    df    Sig.    Exp(B)
Step 1a    Gender01    2.572    .771    11.124    1    .001    13.098
Age    .295    .044    45.464    1    .000    1.343
TCL    .026    .006    20.643    1    .000    1.026
HDL    -.115    .029    16.058    1    .000    .891
SBP    .056    .018    10.129    1    .001    1.058
TRTBP    2.002    .568    12.409    1    .000    7.407
Constant    -27.031    3.738    52.299    1    .000    .000
a. Variable(s) entered on step 1: Gender01, Age, TCL, HDL, SBP, TRTBP.

Area Under the Curve
Test Result Variable(s):   Predicted probability
Area    Std. Errora    Asymptotic Sig.b    Asymptotic 95% Confidence Interval
Lower Bound    Upper Bound
.982    .005    .000    .971    .992
a. Under the nonparametric assumption
b. Null hypothesis: true area = 0.5

The prevalence of all highlighted categories were lower than those of literature; this is due to the population samples€™ age frequency shifting toward youth. All the variables are age dependent except the Body Mass Index (BMI) which showed high prevalence of (33.7%) obesity and (38.5%) overweight. The main calculator affected by the BMI results is the Framingham BMI calculator. Thus, according to Cohen€™s Kappa Index the Framingham BMI Calculator fairly correlate with the other Calculators studied as the BMI being one of the factors affecting the calculator€™s outcome while purely age is the affecting factor on the other ones. This was concluded based on a decision tree analysis which illustrated that the main significant variable for the three calculators used is age. Given the sample cuts at which most of the participants are at young ages, the results of moderate and high cardiovascular diseases were merged. As the merging decision was based on the fact that samples with moderate cardiovascular risks at young ages they will develop high risks with age. The merged data showed closer agreement with the cardiovascular disease prevalence reported by other literature.

The future prospect of this study is to recalibrate the calculator to best fit the Qatari population. This can be done by a five years, and ten years follow-up to record their CVD outcome. Thus the calculator can be used in the clinical practice.

:)

Leave a Reply

Your email address will not be published. Required fields are marked *